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Abstract 

This thesis develops a standard Application Programmer's Interface (API) for modular 

terrain representation. The API hides the details of a terrain representation from an entity 

level simulation, thereby enhancing interoperability and flexibility. Additional contribu- 

tions include reduced development costs, enhanced flexibility for developers, and the use 

of a component approach applicable to future simulations. Three reference implementa- 

tions are developed in the thesis representing widely used terrain representations. These 

prototypes consist of a standard set of terrain services that can be used by a simulation 

developer without any knowledge of the underlying implementation. The prototypes serve 

as references, proof of the concept, and as tools for comparison and analysis of existing 

terrain algorithms. We demonstrate this comparison with the JANUS and Modular Semi- 

Automated Forces (MODSAF) line of sight algorithms. This set of API implementations 

also allows emerging simulations to use different terrain formats at run-time without 

source code changes. The API developed in this thesis is the basis for a United States 

Army Modeling and Simulation standard nomination. 
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Executive Summary 

This thesis develops a standard Application Programmer's Interface (API) for modular 

terrain representation. The API hides the details of a terrain representation from an entity 

level simulation. Separating terrain interface from implementation in this manner 

enhances simulation interoperability, reduces development costs, and enhances flexibility 

for developers of Department of Defense simulation models. Development of the interface 

included examination of the existing body of simulation terrain components and the litera- 

ture on simulating terrain. 

In this research we found a small set of critical terrain services common to all of the 

existing terrain simulation techniques. The interface attempts to capture those functions 

that are common to a majority of these legacy simulations. The interface divides these 

functions into high and low level. The thesis documents these high level and low level ser- 

vices by defining method names, parameters, return types, and explanations. Low level 

services provide access to the underlying terrain data structure while high level services 

provide answers to model questions like line of sight and movement. As a default, these 

are written in terms of low level services, and the use of an API permits selective exten- 

sion and replacement of specific functions without re-engineering the entire terrain com- 

ponent. The API data structure defines the default variable types used by compliant 

implementations. 

The thesis includes three functioning prototype implementations of the API based on 

the geometric methods used by the JANUS, Modular Semi-Automated Forces, and 

CASTFOREM simulations. The API makes it possible to use identical terrain representa- 

XI 



tions in comparing algorithms such as line of sight calculations. The thesis recommends 

further experimentation using the prototypes, use of the prototypes as components in a 

modular simulation architecture, and extension of the concept of components to other 

classes of simulation problems. The thesis is the basis for a United States Army Modeling 

and Simulation standards nomination. 
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Just beyond the town there were two hills. One was wooded and 

green; the other was flat, topped by a cemetary. The Union commander, a 

tall blond sunburned man named John Buford, rode up the long slope to 

the top of the hill, into the cemetary. He stopped by a stone wall, looked 

down across the open flat ground, lovely clear field offire...[l] 
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I. INTRODUCTION 

Terrain has had a pivotal impact on the outcome of combat actions for all of 

recorded history. Consequently, military leaders have studied terrain since antiquity. In 

modern times researchers have attempted to capture those aspects of terrain that are criti- 

cal to determining combat outcomes and to develop ways to simulate this impact. 

Buford's decision to secure the ridge overlooking Gettysburg is only one of count- 

less military decisions made throughout history in which terrain figured decisively. Had 

the same forces fought the battle of Gettysburg on different terrain, the outcome might 

have been far different. Hence there is some consensus among simulation developers that 

no entity level model of ground combat can be complete or properly balanced without rep- 

resenting the impact of terrain. The environment impacts nearly every aspect of combat 

[2]. 

A.       PURPOSE 

Existing and legacy entity level computer generated forces (CGF) simulations are 

complex and tightly coupled to their terrain components. This thesis develops a standard 

Application Programmer's Interface (API) for modular terrain representation. The API 

hides the details of a terrain representation from an entity level simulation. The standard 

modular terrain interface contributions include advances in simulation interoperability, 

reduced development costs, enhanced flexibility for developers, and the use of a compo- 

nent approach applicable to future simulations. In addition to the interface design, refer- 

ence implementations are developed for this thesis. These prototypes consist of a standard 

set of terrain services that allow a simulation developer to use a set of common terrain ser- 

vices without any knowledge of the underlying terrain representation. 

The API developed in this thesis is the basis for a United States Army modeling 

and simulation standard nomination. This standard nomination is the aim of the ModTer- 

rain project that is part of the TRADOC Analysis Center Fiscal Year 1999 research plan. 

The thesis directly supports the United States Army Modeling and Simulation Office 
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(AMSO) terrain Standards category by developing an API for terrain representation in 

CGF simulation [3]. 

B.        GOAL 

The ultimate thesis goal is to develop a software interface that contains a complete 

set of services for modeling terrain. Prototype implementations of this interface demon- 

strate that simulation developers may choose from a number of terrain models by simply 

writing calls through the API. In short, the goal is to abstract the terrain implementation 

details from the simulation and the simulation developer. The development phase of the 

API included a thorough review of the existing analytical simulation terrain representation 

methodologies. The current version of the API is the consequence of iteration on the early 

draft specifications presented to the Army M&S community for review in late 1998 and 

early 1999. These draft and subsequent revisions to the API were an attempt to break 

down those aspects of terrain, terrain services, and terrain simulation that were common to 

at least 90% of the simulations examined in the literature. Software, algorithms, and inter- 

faces developed and prototyped in this thesis will be applicable to most existing simula- 

tions and useful to the entire M&S community. 

In this thesis we: 

• develop the first versions of the API - These versions of the API were dissemi- 
nated to several Army M&S organizations for review. This iterative process of 
API design and review builds consensus for the final product. 

• provide a foundation on which to base the standard - The API standard should 
be based on an examination of the literature and the large body of legacy simu- 
lations. From this examination we were able to distill the fairly small number 
of critical functions common to all entity simulations that use terrain. This pro- 
duced a broadly applicable, yet compact specification in the end. 

• document the research leading to the nomination - By coupling a thesis to the 
development of a standard nomination, we were able to capture the back- 
ground and decision making processes that led to the overall design of the 
specification. 

• prototype reference instances of the API for immediate study - The prototypes 
developed in this thesis are functioning implementations of the API. Their 
development proved that it is possible to abstract terrain. They exist now for 
further development, exploration, and experimentation. 



•    create possibilities for further research - The existing reference implementa- 
tions are tools for simulation research, comparison of terrain methodologies, 
and demonstration. A major demonstration of the API is scheduled for mid 
1999. 

This process of develop - test - develop began in the fall of 1998 and is ongoing. It 

is described in Figure 1 below. 
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Standard 
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Figure 1. Develop - Test - Develop Process 

This thesis is the foundation of the ModTerrain project whose goals are: 

• to provide simulation composability, 

• to support improved simulation interoperability, 

• to reduce simulation development costs, 

• to support other modeling and simulation standards, 

• to provide flexibility for simulation developers, 

• to allow for high performance implementation, and 

• to foster innovation in future simulations [3]. 



C.       OVERVIEW OF ARMY MODELING AND SIMULATION STANDARDS 

The United States Army uses modeling and simulation in three distinct but related 

domains: 

• Training, Exercises & Military Operations (TEMO), 

• Research, Development & Acquisition (RDA), and 

• Advanced Concepts & Requirements (ACR) [4]. 

The world of Army modeling and simulation encompasses a broad array of simu- 

lations that are built on an equally broad array of modeling methodologies. This host of 

methods, simulations, interfaces, representations, and models has grown over several 

decades of model development, reliance on model output, and the iterative and progres- 

sive validation of modeling methods. Three categories of simulation are used by DoD: 

live, constructive, and virtual. :j 

Live simulations are those carried out by real soldiers operating real equipment fir- 

ing either live engagements at targets or simulated engagements at each other. The best 

example of a live simulation is the National Training Center (NTC) in the Mojave Desert 

in California. Here leaders, staffs and soldiers participate in brigade and battalion level 

force on force exercises using real weapons fitted with the multiple integrated laser 

engagement system (MILES). MILES resolves all direct fire engagements. Indirect, air- 

to-ground, mine and other attrition events are also modeled in the exercise. As described 

in the Combat Training Center Handbook, "units, equipped with Weapons Engagement 

Simulation Systems, conduct training in areas containing sophisticated data collection and 

recording systems that provide a record of engagement for review, analysis, and use in 

planning and conducting training upon return to home station [5]." 

Virtual simulations are high fidelity digital representations of combat presented to 

the soldier, leader, or staff in some form of synthetic or simulator environment. The most 

obvious example of a virtual simulation is the flight simulator. Flight simulators present a 

pilot or flight crew with a convincing representation of the outside world viewed from 

within a functional mock-up of their aircraft cockpit. Virtual simulation permits repetitive 

training of dangerous or expensive procedures. Examples include complex malfunctions, 



emergency procedures or expensive missile gunnery. The virtual domain is almost exclu- 

sively used for training, although some advanced concepts testing and human factors 

experimentation use virtual simulations. 

Constructive simulations are those that take input on the environment, systems, 

processes, and interactions of combat, use these inputs to generate outcomes, and provide 

the analyst with output based on these outcomes. Constructive simulations fall into two 

general classes: aggregated and entity-level. 

An example of a constructive simulation used for training is the Battle Command 

Training Program (BCTP) Based at Fort Leavenworth, Kansas. Part of this program is a 

constructive simulation called a "War Fighter Exercise" (WFX). The exercise uses the 

Corps Battle Simulation (CBS). The WFX is conducted at the unit's home station. 

"Division, Brigade, and Corps Tactical Operations Centers (TOCs) deploy 
to field locations, normally within 15 km of the installation's BSC. Inside 
the BSC unit players simulate the subordinate units of the corps/division 
and fight the battle using the CBS. BSC players communicate with then- 
higher headquarters using doctrinal means of communication only, making 
the simulation transparent to the commanders and staffs [5]." 

D.       CHALLENGES 

Recent constrained budgets along with marked gains in computer technology have 

driven increased reliance on simulation in the live, virtual and constructive domains. The 

increased demand for simulation to fill an expanding set of roles led to a situation in the 

early 1990s in which overlapping, vertical, non-standardized development threatened to 

fragment efforts to develop timely, accurate, inexpensive, and useful simulations. As 

noted by McGlynn and Timian, "we examined the current state of the Army's M&S envi- 

ronment, or more simply put, where we were. Then we articulated the desired state, or 

where we wanted to be, in the form of an objective M&S environment. We then set about 

establishing a course of action to bridge the gap between the current state and the desired 

state [6]." This examination and analysis led to the development of the standards nomina- 

tion and approval process (SNAP) and the Model and Simulation Resource Repository 

(MSRR). Critical to the success of this effort to create a process for modeling standards 

was its broadly defined objective "to create an environment that promotes the sharing and 



reuse of M&S Standards procedures, practices, processes, techniques, algorithms, or heu- 

ristics [7]." In so defining the process, Army leaders and analysts avoided the formation of 

a rigid authoritative organization and maintained the leverage inherent in a system that 

eliminates the boundaries between the military, industrial, and academic development of 

models and simulations. 

Within SNAP existing standards are classified as draft, approved, or mandatory 

and are maintained in these 19 different standards categories: 

Acquire, 

Architecture, 

Attrition, 

C4I Integration, 

Command Decision Modeling, 

Communication Systems, 

Cost Representation, 

Data, 

Deployment/Redeployment, 

Dynamic Atmospheric Environments, 

Functional Description of the Battlespace,- 

Logistics, 

Mobilization/Demobilization, 

Move, 

Object Management, 

Semi-Automated Forces, 

Terrain, 

Visualization, and 

Validation Verification & Accrediation [7]. 

The ModTerrain project directly addresses standards requirements for the terrain, 

semi-automated forces (SAF), and object management categories. 



The terrain standard category "establishes standards for the objects, algorithms, 

data, and techniques required to represent terrain and dynamic terrain processes in model- 

ing and simulation [3]." 

The semi-automated forces category "includes software integration that produces 

realistic entities in synthetic environments that interface appropriately with live, construc- 

tive and simulator entities, but which are generated, controlled and directed by computer 

routines [3]." 

The object management category "is involved with the process that develops 

abstract object classes that are consistent in their representation of object attributes/meth- 

ods, applicable to 95% of the M&S employing objects, understood by the M&S commu- 

nity, and interoperable at levels allowed by their model environment [3]." 

E.       STANDARDS NOMINATION AND APPROVAL PROCESS (SNAP) 

The Army uses a seven step process, SNAP, to develop M&S standards [8]. These 

steps are: 

• Build Teams, 

• Define Requirements, 

• Develop Standards, 

• Achieve Consensus, 

• Obtain Approval, 

• Promulgate Standards, and 

• Educate. 

The current state of the ModTerrain project is the development of the standard. 

Prototyping and working models will assist in the development of consensus and the reso- 

lution of interoperability and other issues from the broader community. The ModTerrain 

API is unlikely to evolve into a rigid, mandatory standard applicable across the entire 

spectrum of M&S activities. Rather it is being deliberately developed as a flexible, open 

framework for enabling simulation developers to build on existing terrain representations 

and services. 



F.        ORGANIZATION 

The remainder of this thesis contains a discussion of terrain representation, a 

description of the ModTerrain API standard, documentation of the reference implementa- 

tion, and examples of some experimentation permitted by the reference implementation. 

Chapter two describes some of the general methods of representing terrain eleva- 

tion models and terrain features models. We examine different terrain representations for 

illustration and comparison with emphasis on explicit regular gridded terrain elevation 

representations. Finally we look at the general information a typical analytic simulation 

model requires of a terrain representation. 

Chapter three describes in detail the structure of the most common analytic line of 

sight methods. The line of sight algorithm is broken down into constituent subroutines, 

and the DYNTACS, JANUS, ModSAF, and CASTFOREM line of sight methodologies 

are explained. 

Chapter four is a complete description of the Application Programmer's Interface. 

It lists the object hierarchy and the low-level, high-level, and meta services specified by 

the API along with parameters, return-types, and brief descriptions. 

Chapter five is a description of the reference implementation developed for this 

thesis. This reference implementation includes three instances of the API modeled on the 

geometric terrain services provided in the JANUS, ModSAF, and CASTFOREM simula- 

tions. 

Chapter six is a series of recommendations for further research using the tools 

developed in this research. These include the continued use of the prototype for explora- 

tion, the incorporation of the prototype into component based simulations, and the exten- 

sion of the process of component abstraction to other classes of simulation problems. 



H. TERRAIN REPRESENTATION 

All entity level simulations, even board games and rehearsal tools, make use of 

some kind of terrain model. At one end of the terrain model spectrum are "sand tables." 

These are crude scaled down mock-ups of an operation constructed from materials at 

hand. Commanders and staffs in small units use sand tables principally for mission 

rehearsal and war gaming because they help leaders to visualize terrain, spatial relation- 

ships and the progression of the tactical plan thorough time [2]. At the other end of this 

spectrum are high fidelity digital virtual representations. The Military Operations in Urban 

Terrain [MOUT] training facility is a terrain model of a general urban setting that might be 

used in a live simulation. Similarly, the National Training Center [NTC] is a general desert 

terrain model. Special operations forces occasionally use faithfully replicated building and 

airplane mock-ups for live training and mission rehearsal. In military board games a scale 

terrain board with an overprinted grid and relief data represents terrain. Terrain character- 

istics in these board game models are usually aggregated to the level of resolution of the 

grid cell. 

A terrain representation is distinguished from raw terrain data by at least one level 

of processing and is stored so that a specific simulation can access it directly. A terrain 

representation is normally generated from raw data for use by the simulation or generated 

by some landform surface generating algorithm. The terrain representation is then stored 

in a format that can be accessed directly by the simulation. Such formats include pointers, 

headers, meta-data and an array structure of x coordinate, y coordinate, and z coordinate 

(elevation) values. The actual structure of these arrays varies by simulation. The inter- 

change of data between different simulations is the subject of the Synthetic Environment 

Data Representation and Interchange Specification (SEDRIS). The goal of the SEDRIS 

project is to provide a common representation model and provide an interchange mecha- 

nism between terrain representations from different simulations [9]. 



A complete terrain representation requires consideration of both a terrain elevation 

model and a terrain features model. In the next sections we will examine the types of ele- 

vation and feature models common in existing simulations. 

A.       ELEVATION MODELS 

In general, elevation data are stored as an array of numerical values that represent a 

uniform, discrete sample of the terrain surface. An individual element in this array is 

known as an elevation post. Most existing representations use regular, square grids of ele- 

vation posts. Others use regular rectangular, triangular or hexagonal representations. 

These representations are called regular gridded networks (RGN). The most general case 

of an explicit terrain representation uses irregularly spaced elevation posts that generates a 

terrain mesh of non-uniform triangular facets. These representations are known as Trian- 

gulated Irregular Networks (TIN). TINs may be generated from a regular gridded network 

by selectively removing elevation posts using thinning algorithm. 

The underlying array of elevation posts is a discrete representation of the continu- 

ous real world. One may conceptualize progressively higher and higher resolution terrain 

representations, but at any level there are an infinite number of "holes" between every two 

posts. 

The only polygons capable of mapping without overlap to a regular grid are uni- 

formly sized squares, rectangles, triangles, or hexagons. Squares are used most commonly 

in digital representation [12]. The advantage of regular gridded networks is the simplicity 

of finding a post near or at a specific location. Given the extent and resolution of the grid, 

die calculation to find the element or elements nearest to a general point is trivial. The ele- 

ments may be stored in a one dimensional array, and the explicit x and y coordinates may 

be either stored or calculated at run time. A general location of interest will always be 

bounded by a polygon whose vertices consist of points of known elevation. Once the 

bounding polygon is found these elements may be used to interpolate the elevation of the 

general point contained within the bounding polygon. In a TIN this method of pulling the 

bounding polygon from a node list is more complex, but the methods used for determining 

the elevation of the location in question are similarly trivial. 

10 



The elevation at the exact coordinates of an elevation post is stored explicitly in 

the terrain elevation database and may be easily obtained. However, the elevation of a 

location offset from a post must be approximated at run time. The need to repeatedly poll 

the terrain representation for elevations is a large computational burden. By some esti- 

mates the more complicated JANUS line of sight (LOS) algorithm is three times slower 

than a simple nearest post LOS algorithm [12]. The subroutine for determining elevation 

is an important component of this algorithm, and the implementation of a software method 

for determining the elevation of a general point within the boundaries of the terrain repre- 

sentation is critical to efficient, useful simulation. 

Some simulations simply return the elevation of the nearest post to the point in 

question. Some perform more complex arithmetic to estimate an elevation. Those that 

return the elevation of the nearest post are sometimes called "grid cell" or "nearest square 

methods [12]." More complex algorithms, like those used by ModSAF and JANUS, return 

an interpolated value for the elevation. Elevation models fall into the broad categories of 

explicit, analytic, and hybrid. These are described in the next sections. 

11 



1.        Explicit Representations 

Any explicit representation of terrain must consist of some systematic arrangement 

of elevation data. The individual element in this set is called an "elevation post." 

• • 

Figure 2. Elevation Posts 

Alternatively, these posts may be viewed as grid "cells" of known elevation. 

Figure 3. Elevation Grid Cells 

Explicit representations may be geo-specific or geo-typical. Geo-specific terrain is 

developed by sampling elevations somewhere on the earth's surface. It is commonly used 

12 



when we wish to study a known area for which elevation data exist. Geo-typical terrain 

representations are usually built from algorithms that invoke Gaussian or trigonometric 

formulae to generate a smooth surface. These functions are generally parameterized so 

that they produce a landform with desired characteristics that are typical of some portions 

of the earth's surface, but specific to none. 

2. Analytic Representations 

Models that use analytic terrain representations use similar functions to represent 

the surface. However, an analytic representation invokes the representative surface gener- 

ating function for an elevation value at run time instead of querying a pre-processed data- 

base of terrain posts. These methods generally alleviate storage requirements, add some 

computational burden, and permit "exact" rather than interpolative determination of the 

elevation of the terrain sheet at a specific point. They do not permit the incorporation of 

real world data. An example is the Variable Resolution Terrain Algorithm. This algorithm 

builds a terrain surface from the superposition of a number of hills whose parameters are 

determined stochastically within a range corresponding to the overall terrain characteris- 

tics desired [11]. 

3. Hybrid Representations 

One may conceive of a representation in which known elevation posts are used as 

initial conditions for surface generating equations that can fill in the spaces between them. 

As an example, sand dunes tend to be found in relatively large fields of regularly spaced, 

similarly shaped dunes. Because of the low resolution in many explicit representations an 

individual dune would not likely be represented in a typical terrain elevation database. A 

hybrid representation can bring the dunes into existence for the associated combat model. 

4. Comparison of Regular and Irregular Representations 

The overriding disadvantage of regular terrain grids is that they are wasteful of 

storage space in cases where large areas of terrain are of nearly identical elevation. The 

general TIN representation is a more efficient method of depicting the actual contour. 
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However, the advantage of the regular network is that it is both easily generated from 

existing data that are generally stored in regular grids and that the logic for using a regular 

network is much simpler than the logic for using an irregular network. The DTED prod- 

ucts are a uniform matrix of terrain elevation values that provide basic quantitative data 

for systems and applications that require terrain elevation, slope, and/or surface roughness 

information [12]. These data exist for the entire earth at various levels of resolution and 

general methods of storage and retrieval are easily implemented and translated. Transla- 

tions between different representations, datums, and coordinate systems are easily imple- 

mented. 

The elevation model provides only a limited view of the terrain. A complete terrain 

picture requires features. Feature representation is the subject of the next section. 

B.        FEATURES MODELS 

The simplest terrain representation makes use only of elevation data. This is some- 

times called a "bald earth" representation [11]. An array of x, y, and z coordinates is suffi- 

cient to specify the entire terrain mesh. However, entities interact with more than just the 

ground underneath them. The real world environment is filled with features that impact 

behaviors, interactions, and combat outcomes. These influences include breaking line of 

sight and impacting mobility. The terrain grid alone is likely too simple a model to provide 

credible results. Terrain representation must also permit the modeling of terrain features. 

The richness of this feature set depends on the simulation requirements. A driving force 

behind the feature data study cited above was the "need for a more precise understanding 

of the cultural and natural feature impacts on LOS prediction [12]." Features are often 

classified as point, linear, or area [9]. These classes are described below. 

1.        Point Features 

Point features are natural or man-made objects, like buildings, towers, or individ- 

ual trees, that may be adequately located in the terrain representation by a single point in 

space. The feature carries information about its physical extent and interaction behaviors 

as parameters. While the virtual representation must create an adequate sensory image 
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from these data carried by the feature, the constructive model need only carry feature 

parameters needed by the underlying simulation methodology. In a regular gridded net- 

work these point features may be placed accurately at general positions or offset from then- 

real positions and placed coincident with elevation posts. Similarly a TIN may define a 

post at the location of each point feature or simply place the point features at general loca- 

tions not associated with a vertex in the network. 

2. Linear Features 

Linear features include roads, rails, waterways, power lines, and similar terrain 

elements whose spatial properties "may be adequately modeled as one-dimensional. Often 

these objects carry information like lane width, surface type, and water depth as parame- 

ters rather than as explicit geometric information. Linear features models, like point and 

area feature models, have a conflict between the virtual simulation's requirement for data 

to support visual models and the constructive simulation's requirement for data to support 

analytical models as point feature models. 

3. Area Features 

Area features contain information about a region with extent in more than one 

dimension. Forested areas, swamps, general urban terrain, and lakes are examples. These 

features may be defined by a list of posts, a list of coordinates defining a bounding poly- 

gon, or as an attribute of a defined region of the elevation model such as a triangular facet 

in a TIN. 

4. Scope of the Feature Representation 

The range or richness of the set of terrain features represented is dependent on the 

needs of the underlying simulation methodology. One major consequence of this varying 

need for feature data over the current family of simulations is a tight coupling between ter- 

rain representation and simulation. The variety of feature data used by simulations nearly 

rivals that found in commercial geographical information systems (GIS). 
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Feature representation is an area in which legacy, contemporary and proposed ter- 

rain representations diverge dramatically. Additionally, the needs for feature data vary 

widely by intended use of the terrain representation. For example, consider the representa- 

tion of a building. A virtual visualization requires data like color, reflectiveness, lumi- 

nance, and surface texture. In fact extremely high-resolution representations of complex 

features like buildings require a large and specifically defined data structure. In contrast, a 

building may be represented adequately in a constructive simulation by a short list of data 

elements, such as its corner locations, and height. There are many enumeration scheme 

standards and libraries for features data. An example is the Military Specification for Vec- 

tor Smart Map [10]. This specification includes a nearly exhaustive list of terrain feature 

types and sub types. The focus of the specification is on cartographic products like maps 

and navigational charts, so the feature set is organized into "thematic layers" that are an 

reflective of the art of map making rather than the art of simulation. Each enumeration 

scheme tends to be highly representative of the needs of the team who built the representa- 

tion. One of the goals of the SEDRIS project is a set of mappings between many of these 

feature enumerations. 

Adding to the complexity of feature representation is the notion of an exhaustive 

enumeration of feature types. Legacy simulations attempt to capture a large enough set of 

feature attributes to allow for a detailed simulation methodology while remaining within 

speed and storage constraints. These restrictions on the scope of terrain attributes led to 

restrictions on the simulation methodologies that were dependent on the terrain. Move- 

ment modifiers in the JANUS representation are carried only for three broad classes: 

wheeled, tracked, and dismounted entities. This places a limit on any modification to the 

movement algorithms employed by the simulation. Any proposed enhancement requires 

altering the underlying terrain representation that renders the existing body of terrain rep- 

resentations obsolete. In the next section we examine the major ways in which simulations 

use terrain representations. 
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5.        Mapping Between Representations 

Mapping between feature representations in different terrain models is one of the 

most difficult problems facing the API design. An exhaustive set of one to many and com- 

plementary many to one mappings between terrain representations is not necessary 

because some simulations are designed to operate alone. Mapping rules may be devised 

which permit a useful interaction of any two specific simulations even if some loss, round- 

ing, or generalization is necessary in one or both directions. Ideally, this mapping between 

feature sets is mathematically "one to one and onto" as shown in Figure 4. For each ele- 

ment of the first set there is exactly one, and only one, corresponding element in the sec- 

ond set. Typically these one to one and onto mappings are not possible. In fact among 

legacy systems there are no two simulations that use identical feature sets, so running the 

simulations together, each using its own feature set, permits the situation shown in Figure 

5. 

TERRAIN 1 TERRAIN 2 

FEATURE 1   < 

  

*   FEATUREB 

FEATURE 2   « ►   FEATUREC 

FEATURE 3   « ►   FEATURE A 

Figure 4. One to One and Onto Mapping Between Feature Sets 

In Figure 5, the mapping to one feature in the set is overloaded. Note that the arrow 

from feature 2a to feature B is one-way. This implies that once a feature of type "2a" has 
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been mapped to a feature of type "B" in the other representation, it's identity as a "2a" fea- 

ture can never be recovered deterministically. 

TERRAIN 1 TERRAIN 2 
FEATURE 1 

1 
••••> FEATURE B j 

FEATURE 2 
I 

FEATURE 2a FEATURE C 

FEATURE 3 FEATURE A 

"T 

Figure 5. Overloaded Mapping to a Feature Set 

Even if a master feature super-set, encompassing every conceivable feature type 

and sub-type in every simulation in existence were built, and even if all simulations were 

required to map into this feature set, the problem would exist. Consider Figure 6. 

TERRAIN   1 
FEATURE 1   ■* 

FEATURE 2 

FEATURE 2a 

FEATURE 3   •* 

MASTER 
*■    MASTER I    <* 

*■   MASTER II 

-*•! MASTER III 

*•  MASTER IV   «* 

TERRAIN  2 

la. FEATURE A  | W 

FEATURE B  j 

lZlr~a)». FEATURE C  1 

Figure 6. Mapping Using a Master Feature Set 

In Figure 6 the master feature set is placed between the two run time terrain repre- 

sentations, but mapping from Terrain 2 back to Terrain 1 still mislabels all instances of 

feature type "2a" in Terrain 1 as feature type "2." The insight gained from this sort of anal- 

ysis is valuable because it limits the scope of the API. In the prototypes developed in the 

thesis, the feature object is kept abstract enough to permit its instantiation as a representa- 

tion of nearly any feature from an existing or future feature set. At the same time this fea- 

ture object was designed to be both "thin" and "flexible." Thin refers to the small number 

of instance variables and methods associated with the feature object. Flexibility is a conse- 
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quence of the object oriented approach to the prototype implementation. This approach 

permits the extension of the feature object through inheritance. 

C.       TERRAIN MODEL USAGE 

The degree to which the simulation uses terrain drives the development of the rep- 

resentation. One of the major stated goals of this thesis is to show that the tight linkage 

between terrain and simulation may be de-coupled through an abstracting interface. The 

places where terrain and simulation interact most frequently are described below. 

1. Intervisibility, Detection, Acquisition 

An entity level simulation will interact with its terrain representation most fre- 

quently to resolve intervisibility, acquisition and detection outcomes. In fact these services 

are a tremendous user of computational resources and together serve to constrain the reso- 

lution and manner of terrain use. Further, the entity by entity intervisibility polling 

requirement has driven most of these simulations to employ a time step or hybrid time step 

and discrete event methodology. A standard set of terrain services and a compliant terrain 

representation must permit efficient access to and resolution of these questions of geome- 

try with respect to the terrain grid. Further, since "bald-earth" representations are not 

likely to be adequate, the impact of feature data on these questions must also be repre- 

sented in an efficient manner. 

2. Movement 

After intervisibility, movement is the next most demanding consumer of terrain 

information. The physics of movement and the impact of terrain on movement are well 

understood and modeled in high resolution engineering simulations. Relevant data on ter- 

rain material, soil type, moisture, tree spacing and diameter are available. Their impact on 

movement is well modeled. As a result many simulations model the impact of terrain and 

weather on the movement of an individual entity with a great deal of resolution. Any stan- 

dard set of terrain services must provide efficient access to the type of information these 

algorithms require. 
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3. "Visualization 

Although user interfaces are not simulations, visualization of the terrain model and 

the interaction between entities in a simulation is critical to extracting useful information 

from the simulation. A standard set of terrain services and a compliant representation will 

permit visual representation of the underlying analytical model. If the underlying model is 

a highly simplified version of the terrain, the visualization of it should not imply a more 

detailed representation. On the other hand if the purpose of visualization is to enhance 

realism or training effect, then the visualization software should be able to construct and 

populate a realistic scene from a sparse analytical terrain representation. 

4. Other Uses 

A well designed modular terrain component permits increased complexity in a 

modular way in areas where such complexity is needed. Aerosols, weather, and dynamic 

terrain elements, are all areas left open to enhancement by the design of the API. This 

openness is a critical design element of the API. Within the API the implementer is free to 

use existing functions or write others. 

The most algorithmically intensive question, and one that has been studied exten- 

sively, is the question of line of sight. This is the subject of the next chapter. 
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HI. THE LINE OF SIGHT ALGORITHM 

This chapter describes the components of the geometric line of sight algorithm. It 

gives a detailed description of some well known line of sight methods which are the basis 

for the prototype implementations of the API. First the underlying methods of determining 

the elevation of an arbitrary point are described, then the line of sight algorithms that use 

this elevation value are exposed. This chapter touches on four established line of sight 

methods: Dynamic Tactical Simulation (DYNTACS), Modular Semi-Automated Forces 

(ModSAF), JANUS, and CASTFOREM. 

If an entity level simulation requires interaction between entities, and if that simu- 

lation represents the effect of terrain, then it requires some method of determining whether 

an unbroken geometric line of sight between any two given entities or locations exists. 

This algorithm serves as a basis for determining whether a detection occurs or a direct fire 

engagement is possible. Further, this algorithm must posses certain characteristics to be 

useful in practical application. Among these characteristics are accurate output, repeatable 

results, computational simplicity, modest storage and retrieval overhead, and ease of 

implementation. 

Accurate output refers to the need for the simulation to produce results that reflect 

sufficiently identical outcomes to those that would be encountered by identical systems 

operating on the real terrain modeled in the database. Repeatable results are easy to obtain 

in strict geometric models, but the notion may be extended to obtaining like or similar 

results in a statistical sense from different runs in a stochastic analytical model. The need 

for computational simplicity has driven most implementations of line of sight algorithms 

to trade accuracy for speed. 

Computational complexity for the line of sight problem is polynomial in the num- 

ber of entities, or n-squared; however, computational experience has shown that the line of 

sight algorithm is often the single largest consumer of processor resources in an entity 

simulation [15]. The extensive use of heuristics to reduce the number of required calls to 
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the line of sight algorithm leaves a problem that is still fundamentally polynomial and too 

computationally expensive for a modest number of entities. 

Modest storage and retrieval overhead is related to computation efficiency, but is 

focused on the way the terrain model is represented, stored and retrieved. Increasing the 

resolution of the underlying terrain database is also an n-squared problem. A twenty-kilo- 

meter square regular grid of one-hundred meter elevation posts contains forty thousand 

elevation posts. Increasing that resolution to ten-meter intervals requires four million 

posts. In the case of irregular elevation grids, rapid database queries to provide elevation 

data become critical to the speed of the line of sight algorithm. 

Ease of implementation is desirable because it allows simple prototyping, layered 

complexity and meaningful documentation. Further, ease of implementation enhances of 

verification. 

The remainder of this chapter will consider line of sight algorithm components, 

several different methods for determining elevation, and finally, some established line of 

sight algorithms which use these elevation methods. 

A.       LOS ALGORITHM COMPONENTS 

Consider a simulation of a battle between a force of x entities and a force of y enti- 

ties. Let n be the sum of x and y, the total number of entities simulated. To a large extent 

the events in the simulation will be driven by detections, which will be predicated on line 

of sight. This requires a poll of each entity for its current line of sight status to every other 

entity at each time step or event in the simulation. As the number of entities increases, this 

problem grows with the square of the number of entities. Hence, for practical purposes 

simulations must make use of some filters and heuristics to decrease the number of 

instances in which the full LOS calculation must be invoked. In other words, the simula- 

tion developer must reduce, by some reasonable means, the number of entities that require 

resolution of the line of sight question for a given situation or time step. Otherwise, the 

simulation becomes overburdened with solving the line of sight question between every 

sensor-target pair. The simplest heuristic is to assume a maximum detection range and 

eliminate sensor-target pairs whose range exceeds this maximum. 
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The algorithm also needs a method for returning the elevation of an arbitrary point 

in the terrain database. The general structure of algorithms is to sample a set of points 

along the sensor target line and determine if any one point has a higher elevation than the 

actual sensor target line. Some algorithms sample only the nearest elevation posts to the 

sensor-target line. Others compare slope instead of elevation [15]. In a well-designed algo- 

rithm the function will halt and return "false" at the first indication that line of sight has 

been broken. 

The final step in determining sensor-target LOS is determining whether features 

interposed between sensor and target prevent line of sight. Theoretically a sufficiently 

detailed feature representation allows geometric calculation of line of sight through the 

feature, but processor and storage issues have led most legacy simulations to use probabi- 

listic methods. If geometric line of sight exists, a probability of line of sight is determined 

based on the number, type, and extent of features along the sensor-target line. We next 

examine several methods to get the elevation of a point. 

B.       GET ELEVATION METHODS 

1.        Four Point Linear Interpolation 

In of the JANUS terrain methodology, the bounding polygon (four posts) of the 

queried position is used to estimate its elevation. Since four points do not define a plane, 

some method must be found to determine the elevation of a general position bounded by 

four known elevations. JANUS performs a linear interpolation on the four points [15]. 

Each of these points is an easily calculated distance from the position in question, and 

each has a known height. More accurately, the distance between the point in question and 

a projection of each of the bounding points onto a plane may be easily calculated. While 

this method produces a reasonable approximation of the elevation at a general point it 

imposes discontinuities in the terrain surface at the edges of grid cells. Since the original 
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JANUS terrain elevation resolution was in discrete units (pentameters), these discontinui- 

ties do not have a serious impact on the simulation. 

Figure 7. The JANUS Get Elevation Method 

2.        The SE to NE Assumption Method 

The ModSAF simulation uses a similar terrain grid and line of sight algorithm to 

JANUS, but it does not estimate elevation in the same way. Instead ModSAF assumes a 

line drawn from the south-east to north-west corner of each cell. This produces a regular 

network of triangles. Instead of performing a least squares estimate for elevation the simu- 

lation determines onto which triangle the point in question projects. It then uses simple 

vector arithmetic to return an elevation [15]. 

Figure 8. The ModSAF Get Elevation Method 

This approach is also applicable for use in an triangulated irregular network where 

the facet surface is taken as the terrain surface. The method of determining the bounding 

polygon list will differ significantly, however, between a regular and irregular representa- 

tion. 
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3. The Nearest Post Method 

Some simulations approximate elevation by using the nearest post to the point in 

question. This method supports the Bresenham line of sight algorithm [12]. The great 

advantage of this approach is the speed with which the elevation is estimated. 

© © © 

© © © 

© © © 

Figure 9. Nearest Post Get Elevation Method 

This approach is identical to aggregating elevation data over a square "cell" 

defined by the resolution of the model. A similar method is used to aggregate elevation 

data over hexagonal arrays in some older simulations and board games [2]. 

4. The Southwest Corner Method 

A simplification of the nearest post method is to return the elevation of the post in 

the southwest corner of the bounding square. 

Figure 10. The Southwest Corner Get Elevation Method 

This method offers the greatest speed advantage, but when used in a line of sight 

algorithm will not necessarily return a reciprocal result. Line of sight may exist in one 

direction and not in the other between two entities. [12]. 
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C.       EXISTING LINE OF SIGHT (LOS) ALGORITHMS. 

1. General 

The algorithms described here are only a representative subset of those that have 

been developed for use in constructive simulations. They are well described by Champion 

[12, 15] as well as Hartman, Perry, and Caldwell [14] and the Military Operations 

Research Analyst's Handbook [2]. The selected descriptions are used in the reference 

implementation of the API presented with this work. 

2. JANUS LOS 

We will examine the JANUS line of sight algorithm first. The JANUS LOS meth- 

odology strikes a reasonable balance between speed, fidelity, and simplicity. However, the 

JANUS LOS algorithm is very closely coupled with the JANUS terrain representation. 

Even though the algorithm and the representation are optimized for performance in the 

JANUS simulation, LOS still takes a significant percentage of the available processor time 

in a JANUS run. 

This discussion of JANUS LOS will take three parts. First we must understand the 

JANUS terrain. Second we make use of the JANUS elevation interpolation methodology 

presented above. Finally, both of these discussions are used to build a description of the 

JANUS LOS algorithm. 

JANUS uses a regular (square) gridded network of elevation posts in a select set of 

resolutions. Certain features within a JANUS terrain carry a parameter, PLOS, that 

impacts the line of sight calculation. Probability of line of sight (PLOS) is a value from 

[0,1] that is used in calculation to represent the probability that line of sight will exist 

along a 25 meter path through this feature. Features that carry this parameter include veg- 

etation and urban areas. Once geometric line of sight using only the terrain grid had been 

confirmed, these probabilities are multiplied together to give a probability that line of 

sight will exist during a specific time step in the simulation. 

To determine the elevation of a specific point in the terrain grid JANUS uses the 

four-point linear interpolation method described in the previous section. In order to carry 
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out the JANUS LOS algorithm, this four point linear interpolation must be executed sev- 

eral times.: 

© © © © © © © 

Figure 11. JANUS Line of Sight After Ref. [2] 

Finally, in order to determine the probability that line of sight exists along a sensor 

target (s-t) line for one time step in a JANUS simulation run, the JANUS LOS algorithm 

goes through the following steps 

For each iteration: 

Calculate the X offset between sensor and target. 
Calculate the Y offset between sensor and target. 
Determine the largest offset. 
Divide this offset value by the resolution of the terrain 
Round to the nearest integer. (This is the number of evenly spaced discrete 

tests along the sensor target line that the algorithm will make). 
Divide the s-t line into this number of equal length segments. 
Determine the slope of the s-t line. 
Step through each of these points along the s-t line one at a time 

At each step: 

Determine the elevation of the terrain grid at that point by four-point linear 
interpolation. 

Compare this elevation with the elevation of the s-t line at this point. 
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If the elevation of the point exceeds the elevation of the s-t line at the point 
break and return "false." 

If the elevation of the point is less than the elevation of the s-t line at the 
point then step to the next point. 

Once all points have been checked, if geometric line of sight exists: 

Determine if the path crosses any line of sight affecting features. 
Determine the geometric distance traveled through any features along the 

path. 
Divide these distances by 25 meters. 
Determine the PLOS for each of these features. 
Multiply through the PLOS times distance for each feature. 

Return the result, a numerical value from [0,1]. 

Once the simulation obtains this value, it makes a draw from the uniform [0,1] dis- 

tribution and returns true if that draw exceeds the computed PLOS. The existence or 

absence of line of sight then impacts many other functions of the simulation such as acqui- 

sition, firing, and visualization routines. 

3.        Dynamic Tactical Simulation (DYNTACS) Line of Sight 

9 $ $ 9 © © §s 

Figure 12. DYNTACS LOS After Ref. [2] 
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DYNTACS LOS uses a method similar to JANUS. The DYNTACS terrain repre- 

sentation is also a square grid of elevation posts. An identical four-point linear interpola- 

tion scheme is used to determine sensor and target elevation. Instead of breaking the s-t 

line into equal parts, DYNTACS LOS determines every point at which the s-t line crosses 

a facet edge in the square lattice. The algorithm then determines these elevations by linear 

interpolation on the two known elevation posts. These interpolations are deferred in code 

until their values are needed. DYNTACS steps through these grid crossing points from 

sensor to target and compares the sensor to target slope with the sensor to intermediate 

point slope. If the slope from sensor to intermediate point ever exceeds the s-t slope, the 

algorithm breaks out of the loop and returns false. If the algorithm steps through to the tar- 

get it returns true. 

4.        Modular Semi Automated Forces (ModSAF) Line of Sight 

ModSAF also stores terrain as a regular (square) gridded network of elevation 

posts. However, ModSAF terrain has a modified view of these elevation posts. This 

change allows for a smoother terrain sheet surface and eliminates the requirement for four- 

point linear interpolation as in JANUS LOS. ModSAF LOS assumes a diagonal across 

each square in the lattice of elevation posts. The orientation of this diagonal is northwest 
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to southeast. This diagonal and the resulting two triangles approximate the actual terrain 

surface. 

Figure 13. ModSAF Line of Sight After Ref. [2] 

The LOS algorithm works in a manner similar to DYNTACS LOS except that the 

algorithm considers all of the s-t line intersection points including the diagonals. In addi- 

tion, the elevations for sensor and target are determined from their coordinate and the 

three known points of the triangular facet on which they rest. ModSAF uses the same 

slope comparison technique as DYNTACS to determine whether LOS is broken along the 

s-t line. In general, the ModSAF calculation will run slower for a given terrain resolution 

than either the DYNTACS or JANUS representations [12]. 

5.        Bresenham Line of Sight 

As noted, the Bresenham method uses the elevation of the nearest post to the sen- 

sor and target, and the elevation of any grid cell through which the sensor-target line 
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passes. This eliminates the need for all of the interpolation arithmetic used in the JANUS, 

ModSAF, and DYNTACS LOS methods. 

Figure 14. Bresenham Line of Sight After Ref. [2] 

The method is extremely fast, but suspect when used in a low resolution terrain 

model [11]. The algorithm steps through the elevation cells and compares the elevation of 

the cell to an elevation threshold calculated from the slope of the sensor target line. In 

order to ensure reciprocal LOS consistency care must be take to "assign" cells consistently 

when a point in question lies an equal distance from two cell posts. 

6.        ALBE Implementation OF Bresenham 

The AirLand Battle Experiment (ALBE) simulation used a similar algorithm to 

Bresenham line of sight except that it used the southwest corner elevation post. The gen- 

eral Bresenham method uses the "post centered grid cell" approach. The disadvantage of 

the ALBE implementation is that it permits non-reciprocal resolution of line of sight cal- 

culations [11]. This means that far a given sensor-target pair, the existence of line of sight 

from sensor to target is not sufficient to guarantee line of sight in the other direction. This 

lack of reciprocal agreement is a consequence of the method used to determine step size. 
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The step size can cause different elevation posts to be selected when stepping from sensor 

to target than from target to sensor [11]. 

7.        Other Geometric Approaches 

The methods described above are representative of a large class of existing geo- 

metric approaches to determining LOS. The implementations described in the next chapter 

are algorithmically faithful to these. They differ principally in their use of double preci- 

sion real values rather than integers. Some older representations used integer values and 

integer arithmetic because of both computational speed advantages and the ease of map- 

ping integer values to finite "pixel" displays. The API permits use of any algorithm. 

The preceding chapters form the background neccesary for the discussion in the of 

the application programmers interface. Development of the API standard began after this 

background was thoroughly examined in a search for the principal themes, structure, and 

uses of terrain in simulation. The next chapter describes the API in detail. 
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IV. THE APPLICATION PROGRAMMERS INTERFACE 

This chapter describes the API. First we show the differences between traditional 

design and design using an API. Next we show block diagrams of the default and alterna- 

tive internal structure of the API. Finally, we step through the definitions, data types, and 

function calls required by the specification. This version of the API was used to write the 

reference implementations developed in this thesis. 

In traditional simulation design, the terrain component is tightly coupled to the 

simulation. As illustrated in Figure 15, the simulation translates data about the environ- 

ment into a run time representation that may be directly queried by the simulation during 

execution. 
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Figure 15. Traditional Terrain Component Design 
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By using the ModTerrain API to abstract terrain from the simulation as shown in 

Figure 16, the developer is able to de-couple the terrain representation. This makes com- 

pliant terrain representations interchangeable. 
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Figure 16. Simulation Design Using an API 

The interface is a multi-level interface consisting of high and low level services. 

Low level services are those that access the terrain representation directly while high level 

services may be written in terms of low level services. The API provides the simulation 

developer with a completely specified set of terrain accessing services that hide or abstract 

from the simulation the details of the underlying terrain representation. As shown in Fig- 

ure 17, the low level and meta services are the only services that must be implemented 

with direct access to the underlying terrain representation. This permits code re-use by 

allowing developers to implement alternative high level services strictly in terms of the 

existing low level services with no need to change any reference to the basic terrain repre- 

sentation. 
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Figure 17. API Diagram 

A.       DEFINITIONS 

In developing the API the development team attempted to use precise definitions 

in the specification and to extend these definitions to descriptive names in well defined 

data types. These data types may be implemented directly, or used to wrap existing data 

types via pass through functions. The formal definitions are spelled out in the API func- 

tional description document. In abbreviated form they are: 

position - the area or point occupied by a physical object. 

location - a position or site occupied or available for occupancy or marked by 
some distinguishing feature. 

coordinate - any set of numbers used in specifying the location of a point on a 
line, on a surface, or in space. 

distance - the degree or amount of separation between two points, lines sur- 
faces or objects. 

direction - the line or course on which something is moving or is aimed or 
along which something is pointing. 

elevation - the height to which'something is elevated or the height above the 
level of the sea. 

altitude - the vertical elevation of an object above a surface of a planet or natu- 
ral satellite. 
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•    height - the distance from the bottom to the top of something standing upright 
or the extent of elevation above a level. 

B.        DATA TYPES 

Data types reflect a compromise between compatibility with legacy systems and 

openness. All of the data types specified in the API have direct correlation to similar data 

types in existing simulation models and terrain representations. Mapping from the defined 

specification data types to those used by a reasonably exhaustive range of simulations is 

trivial. The implementer need only write a pass-through that can wrap his data in the API 

compliant data types. 

1. Mapping Between Data Types 

Two way mappings without loss between externally defined data types may not be 

possible in all cases. One example is a mapping from floating point value to integer value 

and back. This can not be accomplished without loss of information, although it can be 

accomplished with a reasonably arbitrary degree of precision. Likewise mapping between 

supported feature sets in different representations without loss is not possible. A visual ter- 

rain representation that supports dozens of different tree types to permit a realistic display 

can be mapped easily to an analytic representation that only requires one tree type. But 

mapping that one tree type back to the dozens supported in the visual representation is 

impossible. 

2. Coordinate 

In this section we describe the API specification for a one dimensional coordinate. 

We specify a 64-bit floating point value as the default standard for coordinates in compli- 

ant terrain representations. We further specify the default unit of measure for coordinate as 

the meter. The mapping arguments above are still relevant. The use of floating point val- 

ues to represent the basic unit of spatial measurement is a significant design choice that 

will require consensus. There are powerful numerical arguments for specifying integer 

values and using a fine grain as default. 
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In fact the development of euclidean geometric schemes, libraries, and techniques 

for use in computers has favored integer values because of two major advantages: the 

speed of integer arithmetic, and the integer values uses in discrete graphics display. We 

ultimately rejected specifying that coordinates be integer values with a default scale for 

representation in centimeters. Setting aside questions of computational efficiency, the 

most important consequence of constraining the representation of coordinate to integer 

values is the possibility of eliminating all numerical ambiguity in computation, storage, 

and translation from the representation. An important step in the standards nomination and 

approval process, however, is building consensus. The current consensus among those 

who have reviewed the ModTerrain draft standard is that the API specification should use 

floating point values. In the end the flexibility of floating point values outweigh numerical 

efficiency and implementation costs. 

3. Location 

A two dimensional location is a pair of coordinates. Within the API, two dimen- 

sional location is given the name locationjype. Three dimensional location is given the 

name location3d_type and the third dimension is of elevation_type rather than 

coordinate_type. Higher dimension coordinate schemes are possible, but neither manda- 

tory nor supported by the existing services in the API. We also specify location_list and 

location3d_list types that are generally defined data structure containers holding linked 

lists of their respective data types. 

4. Distance 

We specify a distance_type as a 64-bit float. This is a positive scalar value. 

5. Direction 

We specify a directionjype We specify a default scale for direction of radians 

clockwise from "representational north." We use a 64-bit floating point value to represent 

direction. Since the range of possible direction values is only two times pi it appears that 

this allows an unnecessarily fine representation of angles. The data type was selected for 

37 



consistency with coordinate and elevation and because there are conceivable high resolu- 

tion requirements for very fine representation of angular measure. An example require- 

ment is the accurate depiction of star fields in a rendered sky scene. 

6. Elevation 

The elevationjype is also a 64-bit floating point value. Elevation is distinguished 

from coordinate constructively by being defined in a separate data type because the notion 

of elevation is fundamentally different from the notion of coordinate. Specifying a loca- 

tion in three dimensions requires three coordinates. Knowing the elevation of the terrain at 

a point requires the two coordinates that specify that point, and the terrain elevation at that 

point. 

7. Modifier 

We specify a data type called modifierjype in order to permit methods that use or 

return data from the constrained range [0,1]. Modifiers can represent probabilities, per- 

centages, or efficiencies. The modifier data type permits the terrain to carry simple concise 

information about its general impact on mobility, line of sight, degree of damage, and sim- 

ilar uses. 

8. Enumeration 

We specify an enumeration data type. This is an integer value that can be used to 

enumerate any general set of possible cases. The "enumeration value" to "enumeration 

meaning" mapping is not specified in the API. This makes the enumerationJype an 

extremely flexible tool within the API. 

In the next section we describe the low level services that use these data types. 
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C.       LOW LEVEL SERVICES 

1. General 

Low level services are those that reach directly into the terrain representation and 

return data in a form that is usable to the simulation at run time. The low level services 

must be tightly closely coupled to the representation. A fundamental goal of the API 

design was to limit and abstract the number of low level services required and supported. 

By doing this we greatly simplify the task of generating, altering, and mapping between 

compliant terrain representations. 

2. Open Terrain 

This service returns a.file_type. It is the primary means the simulation will use to 

open the file containing a terrain representation for access by the API. 

3. Close Terrain 

In many languages efficient file and memory management require that files and 

databases be explicitly "closed." Pointers to their data are vacated and memory allocated 

to storage and retrieval from within them are returned to the system for general use. Such 

services will be provided here in an API compliant implementation. 

4. Get Elevation 

The get elevation method returns a value for the elevation of the underlying terrain 

representation at an arbitrary two dimensional point. As noted this is a critical function. In 

general the get elevation method must be written specifically to one or a most a small set 

of alternative data representations. 

5. Get Nearest Elevation Post 

The get nearest elevation post method is similarly tied to the underlying represen- 

tation. It returns the nearest explicitly stored elevation value to a general point in question. 
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6. Get Elevation Post List 

This method returns a list of elevation posts. The input parameters define a region 

on the elevation surface. These parameters consist of a location list and a distance. It has 

three required behaviors. 

• A query given a single location and a positive distance returns those posts con- 
tained within a circle centered at the location and of radius given by the dis- 
tance. 

• A query given two locations and a positive distance returns those posts con- 
tained within a rectangle whose length is the distance between the two points 
and whose width is twice the distance value given. 

• A query given n > 2 locations and a distance >= 0 returns those posts con- 
tained within the bounded area defined by those parameters. 

7. Get Bounding Vertices List 

This function returns the list of elevation posts that form the vertices of a polygon 

that bounds a general point in question. For example in regular square grid this function 

will generally return the four vertices of the square that bounds a point in question. 

8. Get Feature List 

This is the only function that permits the retrieval of data containing feature types. 

Its input parameters are a list or location and a distance as above, and also a list of feature 

types of interest. It returns the list of feature instances that are of a specific feature type 

and located by the same geometry rules used in the Get Elevation Post List method. Fea- 

ture type and feature instance are highly abstracted under the API. This function places no 

requirements on either of these data types beyond the requirement that they be explicitly 

located in the coordinate system that underlies the terrain representation. 

Implementing these low level services often requires access not only to the terrain 

data, but to information "about the terrain data." Access to this meta data is provided 

through services described below. 
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D.       META DATA SERVICES 

1.        Get Elevation Model Type 

This service is narrowly defined by the API, and is fairly restrictive; however, the 

impact on most implementations is minimal. The function returns an enumeration type 

whose value indicates the type of elevation model underlying the representation according 

to a standard enumeration scheme: 

Value Model Type 

0 Unknown 

1 regular gridded 

2 irregular gridded 

3 regular triangulated 

4 triangulated irregular network 

5 analytical 

2. 

Table 1. Elevation Model Enumeration Scheme 

Get Elevation Resolution 

This meta data service returns a distance type whose value represents the mini- 

mum possible difference in elevation between any two posts. The API provides for vary- 

ing resolution models by including a version of this function that takes location as an 

argument and return resolution in the vicinity ofthat location. For many applications these 

will return identical values. The developer is free within the API to define the vicinity of 

the point in question. 

3.        Get Horizontal Resolution 

The API specifies similar functionality to provide a distance type whose value is a 

measure of the horizontal resolution of the model. The notion of varying resolution is sim- 

ilarly supported. In irregular networks the API requires return of an average resolution, 

but places no restriction on the determination of this value. 
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4. Get Terrain Boundary 

This function gives the boundaries of the underlying terrain representation. Simu- 

lation developers are free to define appropriate entity behaviors while they are operating 

in an area that does not overly the terrain representation, but the API allows the simulation 

to know the boundaries of this representation. In the default this function returns a list con- 

taining two location types, the lower left and upper right corners. This list may be a series 

of vertices of an irregular polygon in a more complex implementation. Likewise a devel- 

oper may, for some reason return boundaries well within or well outside the actual extent 

of included data. The contract between the terrain implementation and the simulation is 

that data exist within these bounds. 

5. Get X Offset & Get Y Offset 

The get X and Y Offset functions facilitate mapping and translation requirements. 

These may be simple translations from some physical two dimensional coordinate system 

or they may be composed of highly complex Spherical trigonometric functions to permit 

explicit mapping between planar and spherical surface models. The vast majority of 

ground entity level simulation is developed for examination of areas in which the plane 

approximation is valid. The API permits support of those instances where the model 

developer requires a more complex surface. 

From the low level and meta services provided above, a default implementation of 

the API will construct the basic and advanced high level services described in the next two 

sections. The basic services provide the simulation answers to common geometry ques- 

tions. The advanced services answer complex questions about movement and line of sight. 

E.       BASIC HIGH LEVEL SERVICES 

1.        General 

In the reference, or default implementation of the ModTerrain API, the basic high 

level services are built from low level services. They provide the developer with basic 

information about spatial relationship and orientation. Developers are not bound by the 
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default implementations. Alternative implementations using user defined high level ser- 

vices and default or user defined low level services are all possible. 
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Figure 18. Alternative Implementation of API 

Get Distance 

This returns the distance between any two points. The specification gives a default 

implementation of euclidean two dimensional distance, but more complex implementa- 

tions are permitted. 

3. Get Direction 

This returns the horizontal direction in radians subtended by a segment between 

two specified points and a line from the first point in the direction of a representational 

north. The API gives a default of "grid North" as the base line. Most computer representa- 

tions of angle have a default of "screen right," or "grid West" as base angle. 

4.        Get Slant Range 

Slant range is the line of sight distance between two different three dimensional 

locations. 
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5. Get Slope 

Within the API slope refers to the instantaneous or average slope of the terrain rep- 

resentation. When this function is called with two location arguments, the slope between 

those two points is returned. When it is called with one location type and one direction 

type argument the instantaneous slope of the terrain representation at that location and in 

that direction is returned. 

6. Get Translated Location 

This function permits the simple translation of a location along a distance and in a 

direction. It returns a location type. 

7. Get Material Type 

This function return an enumeration type of the surface material present at the 

location given as an argument. Many movement algorithms account for varying surface 

material types in order to model their impact on trafficability. The underlying terrain rep- 

resentation must carry data about material type in order for the implementation to have 

use. 

F.        ADVANCED HIGH LEVEL SERVICES 

The advanced high level services are built from basic services, meta services, and 

low level services and provide the developer with default implementations that may be 

used at a higher level in the overall simulation methodology. The advanced high level ser- 

vices are those that are most likely to be specific to an individual simulation, and are more 

likely to be overwritten by a simulation designer. 

8. Line of Sight 

This is the boolean value specifying whether unmodified geometric line of sight 

exists between two locations. 
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9. Probability Line of Sight (PLOS) 

This is the probability [0,1] that line of sight exists between two locations. It per- 

mits developers to use stochastic methods of determining line of sight for detection and 

similar simulation functionality. 

10. Movement Modifier 

Similar to PLOS, this returns a value from [0,1] that can be used in a general way 

to modify the movement characteristics of an entity. 

The next chapter describes the reference implementations developed by the author 

as prototypes to test the API and as tools for further study. The chapter goes on to describe 

some experiments developed to demonstrate the contrasting behaviors of the different 

implementations. 
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V. REFERENCE IMPLEMENTATIONS 

We now present three reference implementations of the ModTerrain API. The run 

time terrain representation uses a regular gridded network for elevation geometry and a 

simplified feature representation scheme. The reference implementation all use the same 

feature services, and implement the geometric algorithms of the JANUS, ModSAF, and 

CASTFOREM simulations. The reference is written in the JAVA programming language. 

These implementations were specifically designed to support future work on the loosely 

coupled components and web based simulation projects. 

A.       TERRAIN REPRESENTATION IMPLEMENTATIONS 

As noted, legacy simulations are closely coupled with their terrain representations. 

As a method of studying these representations, facilitating reuse at the code level, devel- 

oping hybrid representations, and eventually paving the way for Loosely Coupled Repre- 

sentation of Terrain, we implemented the run time terrain object in a JAVA hashtable 

object. The hashtable is a data structure that consists exclusively of key-object pairs. The 

data types used as the keys and the data types that store the information in the hashtable 

are completely general. Access to these data is guaranteed through simple access methods 

that follow a standard pattern. This permits the use of a small set of key types for storing 

terrain information whose details may be unknown to the user. This run-time representa- 

tion may be easily extended. These reference implementations and terrain data represent a 

resource for further study and development. 

Key String Object Description 

"header" a ModTerrain header_type 

""xValues" An array of x values of the posts 

"yValues" An array of x values of the posts 

'elevValues" A two dimensional array of elevation posts 

Table 2. Run Time Representation Hashtable 
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Key String Object Description 

"horizontalResolution" A double value giving the distance between posts 

"elevationResolution" A double value giving the resolution 

"xCellWidth" An integer giving the number of cells (E W) 

"yCellWidth" An integer giving the number of cells (N S) 

"supportedFeatureList" A vector of feature_type 

"existingFeatureList" A vector of feature_instance_type 

"elevationModelType" An integer giving the model type 

Table 2. Run Time Representation Hashtable 

1.        The Terrain Class Hierarchy 

As noted, a terrain representation consists of elevation data, feature data, and meta 

data. A ModTerrainData object contains variables and data structures to hold all of these 

data types along with methods that provide the ModTerrain API implementation access to 

these data. This object also includes a default (no parameter) constructor, a string con- 

structor, and a constructor that takes an existing ModTerrainData object as its argument. 

The class files that were written specifically to implement the ModTerrain data 

structure model are: 

Class Description 

coordinate_type stores/provides access to one coordinate in a double value 

date_rype stores/provides access to a date as an integer value 

datum_type stores/provides access to the datum as an integer value 

direction_type stores/provides access to a direction as a double value [0, PI] 

distance_type stores/provides access to a distance as a double value 

elevation_type stores/provides access to an elevation as a double value 

enumeration_type stores/provides access to the enumeration as an integer value 

feature_instance_list_type stores/provides access to a list of feature instances 

feature_instance_type stores/provides access to an individual instance of a feature 

Table 3. Data Structure Implementing Classes 
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Class Description 

feature_list_type stores/provides access to a list of feature types 

featurejype stores/provides access to an individual type of feature 

file_type stores/provides access to a file as a String object 

header_type stores/provides access to a terrain representation header 

height_type stores/provides access to height as a double value 

location_list_type stores/provides access to a list of (coord, coord) locations 

location_type stores/provides access to a single location as (coord, coord) 

location3d_list_type stores/provides access to a list of 3d coord elev) locations 

location3d_type stores/provides access to a single 3d location as (coord, coord, elev) 

modifier_type stores/provides access to a modifier as a double value [0,1] 

name_type stores/provides access to a name type as a String object 

vector3d_type stores/provides access to a 3d vector as three double values 

version_type stores/provides access to a version type as an integer value 

Table 3. Data Structure Implementing Classes 

2. Terrain Grid Implementations 

The terrain grid is implemented as a set of arrays. Time constraints have limited 

implementation only for regular gridded elevation representations. The extension to trian- 

gulated irregular networks demands the implementation of efficient sorting routines that 

can rapidly determine the specific triangular facet that contains an arbitrary point. It fur- 

ther requires a partitioning scheme that prohibits simultaneous assignment of an arbitrary 

point to more than one facet. The high level services developed in here could be used or 

adapted for use with an alternative terrain representation. 

3. Terrain Feature Implementations 

Each terrain feature is a specific instance of a feature from the set of features sup- 

ported by the representation feature enumeration. Examples of featurejype and 

feature_instance_type are provided in the reference implementation. 
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B. API IMPLEMENTATIONS 

We created three reference implementations of the ModTerrain API. These imple- 

mentations are faithful to the geometric algorithms used in the JANUS, ModSAF, and 

CASTFOREM simulations respectively. The key numerical difference between these ref- 

erences and the original simulations is that they all use the same run time representation 

hashtable object whose numerical values are stored as double precision real numbers. In 

their legacy code these simulations used lower precision numerical schemes because of 

storage and computational efficiency constraints. They all use an identical simplified fea- 

ture methodology that is patterned after the JANUS simulation. Each feature instance car- 

ries a [0,1] value that may be used as in JANUS to calculate the probability that line of 

sight exists across a path that contains the feature. Similarly each feature carries a [0,1] 

modifier value that may be used to represent the impact that this feature has on mobility. 

All of the implementations share common functionality for file handling and meta data 

services. This is an example of the degree to which implementation of an API permits 

code re-use. The following sections give an example of one use for these reference imple- 

mentations. 

C. EXAMPLE EXPERIMENT 

As an example of the type of research that the reference implementations permit, 

we performed a simple experiment using instances of the JANUS and MODSAF imple- 

mentations. The objective of the experiment was to determine if the line of sight algorithm 

used effected the probability of line of sight in a simulation. We generated a bald earth run 

time terrain representation from digital terrain elevation data, i.e. the data included no fea- 

tures. The terrain was a square approximately 8,300 meters on each side. For each trial we 

drew random sensor and target locations. For each of the sensor target pairs we tested for 

geometric line of sight using the JANUS and ModSAF line of sight algorithms. We per- 

formed 3000 trials to provide sufficient data for reasonable use of large sample approxi- 

mations to the normal [16]. The null hypothesis under this experimental design was, "the 

50 



ModSAF and JANUS algorithms will return true for line of sight with the same probabil- 

ity under these circumstances" or more formally, 

Px -P2 = 0 

We use the test statistic: 

z = 
P\-P2 

lpq-{i+1n 
where: 

X+Y m 
P\ + 

n 
■P2 m + n     m + n m + n 

This large sample approach is taken from Devore [16]. The data are shown below 

in Table 4. Substituting these data into the equations above gives a value for the test statis- 

tic of -2.34, and under the conditions tested, we are able reject the null hypothesis at the 

a = 0.05 level. This simple experiment confirms that the two algorithms generate out- 

JANUS MODSAF 

Number Of Trials 3000 3000 

Number Line of Sight = True 564 495 

Sample proportion .179 .151 

Table 4. Data from Multiple Line of Sight Tests 

comes that are different enough to be significant. Although the magnitude of this differ- 

ence is slight, the impact on a simulation that may calculate line of sight many thousands 

of times per run would almost certainly be measurable as a "hotter" rate of detection. 

While previous experimentation in this area was confounded by differences in underlying 

terrain representation, each of these algorithms ran on numerically identical terrain. This 

small experiment illustrates the type of analysis the prototype implementations permit. In 

the next section we describe a more qualitative experiment undertaken to give insight into 

the way different terrain methods "see" the elevation data. 
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D. COMPARISON OF TERRAIN SHEETS 

We explored other experimental possibilities. One was the qualitative visual 

inspection of terrain sheets generated from the elevation methods of the three implementa- 

tions. We generated a run time terrain that consisted only of elevation data. These data 

were themselves generated from the Digital Terrain Elevation Data (DTED) Level 1 data 

set for the southeastern United States. We then used each of the implementations to sample 

from these data at identical points offset from the explicit elevation posts. The sampling 

rate was roughly four to one. We rendered the generated sheets using the three dimen- 

sional chart generator provided with the S-Plus software package. 

Figure 19. Terrain Sheet Generated Using ModSAF 

Figure 19 above shows the general faithfulness of the ModSAF view of the terrain 

DTED level 1 data. The representation at least gives a visual perception of real terrain. 

Figure 20. Terrain Sheet Generated Using JANUS 
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Figures 20 and 21 show views of the identical data as seen by the JANUS and 

CASTFOREM elevation algorithms. These share the ModSAF faithfulness to the DTED 

data, but at least appear blocky and less "real" to the observer. 

Figure 21. Terrain Sheet Generated Using Nearest Post 

Clearly each of the algorithms view identical terrain data differently enough to be 

apparent in a casual visual inspection. We extended these visual assessments of "model 

views" of the terrain to consider a terrain generated from a mixed trigonometric and expo- 

nential level surface. In this analysis we examined the appearance of surfaces generated by 

sampling the surface near its level of resolution. We compared this to the appearance of a 

surface created by oversampling the data. Allow the scale of the existing terrain data to be 

a square 10,000 meters on a side. Let this square be a 101 by 101 element array of eleva- 

tion posts spaced evenly at 100 meter intervals north south and east west. If we sample a 

section of the terrain surface at close to 100 meter intervals we note a somewhat different 

view of the terrain than if we sample it at 25 meter intervals. 

Figure 22. Analytic Surface Sampled at Terrain Resolution 
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Figure 23. Analytic Surface Over Sampled at Four Times Terrain Resolution 

The apparent difference in these views suggests experimentation on the impact of 

variable elevation resolution on simulation performance. This and many other related 

experiments are made possible by these reference implementations. The recommendations 

made in the next chapter include suggestions for experimentation with the prototypes. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

This thesis provides a strong foundation for the ModTerrain project. It documents 

the research, iterative design process, and prototyping that have taken the program to its 

current state. The API is ready for full scale test as it moves toward release as an approved 

modeling and simulation standard. 

The stand alone reference implementations permit analysis of different algorithms 

and representations independent of existing simulations. Legacy code wraps the terrain 

algorithms up in full simulations, while the prototype implementations permit controlled 

examination. 

Rapid prototyping, evaluation, and side by side comparison similar to the example 

experiments shown in the thesis are all possible using the reference implementation and 

the tools available in Simkit. The JAVA programming language permits extension of the 

API using a large library of existing, efficient, verified code. The recommendations given 

here fall into three broad categories: recommendations for using the prototype implemen- 

tations, recommendations for the API specification, and recommendations for extending 

the components notion to other classes of simulation functionality through the employ- 

ment of similar APIs. 

A.       USE OF PROTOTYPES 

The prototype implementations developed for the thesis may be used in two ways. 

First, they permit comparisons between the most widely used and understood terrain ser- 

vices using identical terrain representations. The design of these experiments is greatly 

simplified by the elimination of variations in performance due to numerical or machine 

differences. One obvious type of experiment compares the speed of various algorithm. 

Another possible experiment is a comparison of various algorithm results to measure- 

ments on actual terrain as an extension to Champion's work [15]. It is also possible to 

develop hybrid methods such as one that uses the ModSAF elevation model, but follows 

the JANUS feature model and line of sight algorithm. 
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Further, the implementations are available to serve as terrain components for simu- 

lation objects. In this way, researchers and students may explicitly use terrain in an entity 

simulation without a detailed study and time consuming re-creation of this work. 

Most importantly, the prototype implementations may be used to explore methods 

of answering the line of sight question in a pure event step model. The algorithmically 

simple Bresenham instance is an appropriate first choice for use in these explorations, but 

the API structure permits its replacement with more complex algorithms as means are 

developed to use terrain explicitly in event step combat modeling. The prototypes devel- 

oped here are not the only instances of the API under development as part of the ModTer- 

rain project, however. 

B. NOMINATED TERRAIN STANDARD 

The ModTerrain API has been nominated to the Army Modeling and Simulation 

Office as a standard interface for abstracting the terrain component from simulations. The 

project includes experimentation on at least two implementations of the API. This experi- 

mentation will demonstrate that the principles demonstrated in this thesis can be scaled for 

use in fielded, commercial simulations. Other standard nomination teams will benefit 

from the experience of the ModTerrain team and the notion of abstracting entire simula- 

tion components should be extended toward the ultimate goal of modular simulations that 

the next section describes. 

C. WEB BASED SIMULATION 

The Loosely Coupled Components Research Group at the Naval Postgraduate 

School has developed Java components to support operations research in future distrib- 

uted military networks. The Java implementations of ModTerrain described in this thesis 

are examples of loosely coupled components. The research group's Web Based Simulation 

project seeks to create a library of re-usable Java simulation components for distance 

learning and to support further research. The ModTerrain API and Java implementations 

can play a significant role as existing terrain components that can be used off the shelf or 

modified to meet the needs of the group. 
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APPENDIX A. THE JANUS TERRAIN 

This appendix describes in detail the way the JANUS terrain data structure is built. 

The original code for JANUS was written in FORTRAN. In fact JANUS is a monumental 

programming achievement in FORTRAN. The entire simulation and tool kit comprises 

around 350,000 lines of code. An examination of the representation scheme illustrates the 

close coupling of the terrain model to the simulation. The terrain representation is sparse, 

and contains only those data needed to support the modeling methodologies used in the 

simulation. At times this produces an analytical "coarseness" that is remarkably transpar- 

ent to the user at run time. 

Example: Some terrain features contain a set of four REAL variables that indicate 

the amount of time [in seconds] to achieve an engineering fortification of Level 1, 2, 3, or 

4. The notion of four, and only four, distinct levels of a parameter called "fortification" 

indicates that the underlying simulation methodology is capable of modeling engineer 

activity that increases survivability. But this model is fairly granular. Replacing the "forti- 

fication" model with a more detailed one would require a major change to the terrain rep- 

resentation data structure. 

A.       JANUS REPRESENTATION SCHEME 

JANUS stores terrain data in a large set of arrays. The most important array is the 

terrain grid. This array.does not explicitly contain the x and y coordinates, but rather a 

one-dimensional array of "grid cell data words" for each post. Because the corner coordi- 

nate is held in a variable and the terrain width (both in kilometers and "posts") is also 

maintained, the post by post x and y coordinates can be calculated efficiently "on the fly." 

This frees the representation from a large storage requirement. Each grid cell data word is 

32 bits that are mapped as shown in Table 5 below. The last 16 bits in the word are used as 

Bit Meaning 

0-15 Elevation (pentameters) 

Table 5. The JANUS Grid Cell Word 
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16 Building Present 

17 Fence Present 

18 Road Present 

19 River Present 

20 Vegetation Present 

21 Urban area Present 

22 Generic String Present 

23 Generic Area Present 

24 Obstacle Present 

25 Minefield Present 

26 Breach Lane Present 

27-31 Not Used 

Table 5. The JANUS Grid Cell Word 

flags. They indicate only that a terrain feature of the type flagged is present in that grid 

cell. 

B. POLYGONAL FEATURES 

Points associated with buildings and other polygonal terrain features are kept in a 

pool of nodes. The integer variable KNUMTRNNODES specifies the number of nodes in 

this pool. There are two REAL arrays of length KNUMTRNNODES (TRNODSX and 

TRNODSY). These contain the X and Y Coordinates of the nodes. This node pool is a 

complete list of the x and y coordinate of every corner of every polygonal feature in the 

terrain representation. The number of buildings in the representation is stored in an inte- 

ger, along with the number of the other supported features. For each polygonal type there 

is a set of descriptive arrays that store data about the individual features. For buildings 

these arrays are shown in Table 6. 
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Primitive Type Meaning 

BYTE Specifies the building "type" 

INT*4 pointer to the node pool for the building outline 

BYTE Specifies the building "type" 

INT*4 pointer to the node pool for the building outline 

BYTE number of nodes in pool for this building outline 

INT*4 pointer for building's firing ports 

BYTE number of nodes for firing ports 

REAL These are the min & max x & y coordinates for the building 

REAL 

REAL 

REAL 

Table 6. The Building Feature Type 

Note that this scheme places a 255 vertex limit on individual buildings. This limit 

is common to all of the polygonal features supported by the JANUS terrain. JANUS ter- 

rain representations store an INTEGER that gives the number of poly-features in the file 

and an array that has pointers to first and last feature of each type. 

BYTE Main type of terrain feature 

1 = Not Used 

2 = Fence 

3 = Road 

4 = River 

5 = Vegetation 

6 = Urban Area 

7 = Generic String 

8 = Generic Area 

Table 7. Main Terrain Feature Types 
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Primitive Type Meaning 

BYTE Sub-Type of terrain feature 

INTEGER*4 Pointer into the node pool 

INTEGER*2 Number of nodes for this feature 

REAL These are the min and max x and y coordinates for this fea- 
ture 

REAL 

REAL 

REAL 

c. 
Table 8. General Polygonal Feature Data 

FEATURE SUB-TYPES 

There are also a complete set of arrays that permit the inclusion of feature sub- 

types. Certain sub-types carry additional data elements pertaining to breach lanes, fortifi- 

cation, extinction of LOS, and impact on mobility. Building sub-types are specified in an 

array sized to the number of sub-types. This array caries the data shown in Table 9. 

Primitive Type Meaning 

REAL Total Height (meters) 

REAL Fractional Area of exterior wall openings 

REAL(4) Engineer minutes to reach fortification levels (1-4) 

INTEGER*2 Number of Rooms 

BYTE Construction Type (there can be 255 types) 

BYTE Number of floors 

BYTE Functional Classification 

Table 9. Building Sub Types 

Fence sub-types are similarly specified with the array data shown in Table 10. 

Primitive Type Meaning 

CHARACTER*16 ASCII name 

REAL Total Height (meters) 

Table 10. Fence Sub Types 
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Primitive Type Meaning 

REAL Oblique Angle (radians) (Maybe oblique angle) 

REAL PLOS at right angle 

Table 10. Fence Sub Types 

These arrays are further indexed by the number of breach lanes 

Primitive Type Meaning 

BYTE For each fence type 

0 = cross fence 

1 = clear fence 

INTEGER*2 For each fence type 

time(minutes) to cross or clear fence 

Table 11. Breach Lanes in a Fence Type 

Road sub-types are specified in an array sized to the number of supported sub- 

types by the information in Table 12. 

Primitive Type Meaning 

CHARACTER* 16 ASCII name 

BYTE 1 = Primary, 2 = Secondary 

REAL Road half-width (Kilometers) 

Table 12. Road Sub Types 

This array is also indexed by the three supported mover types with given speed 

degradation factors. 

Primitive Type Meaning 

BYTE Speed degradation factor by mover type 

1 = wheeled 

2 = tracked 

3 = footed 

Table 13. Road Effect on Mover Types 
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River sub-types are specified in an array sized by the number of supported river 

sub-types by 

Primitive Type Meaning 

CHARACTER* 16 ASCII name 

BYTE 1 = primary 

2 = secondary 

3 = filled (lake) 

REAL River half-width (kilometers) 

Table 14. River Sub Types 

As with roads, river sub-types are indexed by mover type 

Primitive Type Meaning 

INTEGER*2 Crossing times by 

1 = wheeled 

2 = tracked 

3 = footed 

4 = swimmer 

Table 15. River Effect on Mover Types 

Vegetation sub-types are specified in an array sized to the number of sub-types by 

Primitive Type Meaning 

CHARACTER* 16 ASCII name 

BYTE Height (meters) 

REAL PLOS per 25 meters 

Table 16. Data for vegetation sub types 

This array is also indexed by mover type 

Primitive Type Meaning 

BYTE Speed degradation factors for 

Table 17. Vegetation Effect on Mover Type 
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Primitive Type Meaning 

1 = wheeled 

2 = tracked 

3 = footed 

Table 17. Vegetation Effect on Mover Type 

Urban area sub-types are specified in an array sized to the number of sub-types by 

Primitive Type Meaning 

CHARACTER* 16 ASCII name 

BYTE Height (meters) 

REAL PLOS per 25 meters 

Table 18. Urban Area Sub Types 

This array is also indexed by mover type 

Primitive Type Meaning 

BYTE Speed degradation factors for 

1 = wheeled 

2 = tracked 

3 = footed 

Table 19. Urban Area Effect on Mover Type 

The JANUS terrain also supports features of type generic string and generic area. 

These have similar data structures to the supported feature types and sub-types, and permit 

a degree of flexibility in terrain representation by allowing the inclusion of generic fea- 

tures not supported by the general enumeration. 
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APPENDIX B. MODTERRAIN SOURCE CODE 

For the sake of brevity the JAVA source code for the reference implementation of 

ModTerrain is not provided in this document. It is maintained by the Loosely Coupled 

Components Group at the Department of Operations Research, Naval Postgraduate 

School. The source code is licensed under the terms of the GNU General Public Licence. 

Copyright (C) 1999 Dale L. Henderson 
This program is free software; you can redistribute it and/or 
modify it under the terms of the GNU General Public License 
as published by the Free Software Foundation; either version 2 
of the License, or (at your option) any later version. 
This program is distributed in the hope that it will be useful, 
but WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 
See the GNU General Public License for more details. 
You should have received a copy of the GNU General Public License 
along with this program; if not, write to the Free Software 
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, 
USA. 
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